What Women Like: A Gendered Analysis of Twitter Users' Interests Based on a Twixonomy

نویسندگان

  • Stefano Faralli
  • Giovanni Stilo
  • Paola Velardi
چکیده

In this paper we analyze the distribution of interests in a large population of Twitter users (the full set of 40 million users in 2009 and a sample of about 100 thousand New York users in 2014), as a function of gender. To model interests, we associate ”topical” friends in users’ friendship lists (friends representing an interest rather than a social relation between peers) with Wikipedia categories. A word-sense disambiguation algorithm is used for selecting the appropriate wikipage for each topical friend. Starting from the set of wikipages representing the population’s interests, we extract the sub-graph of Wikipedia categories connected to these pages, and we then prune cycles to induce a direct acyclic graph, that we call Twixonomy. We use a novel method for reducing the computational requirements of cycle detection on very large graphs. For any category at any generalization level in the Twixonomy, it is then possible to estimate the gender distribution of Twitter users interested in that category. We analyze both the population of ”celebrities”, i.e. male and female Twitter users with an associated wikipage, and the population of ”peers”, i.e. male and female users who follow celebrities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Scale Homophily Analysis in Twitter Using a Twixonomy

In this paper we perform a large-scale homophily analysis on Twitter using a hierarchical representation of users’ interests which we call a Twixonomy. In order to build a population, community, or single-user Twixonomy we first associate ”topical” friends in users’ friendship lists (i.e. friends representing an interest rather than a social relation between peers) with Wikipedia categories. A ...

متن کامل

A High-Performance Model based on Ensembles for Twitter Sentiment Classification

Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...

متن کامل

Detection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets

Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...

متن کامل

Detection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets

Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...

متن کامل

Temporal Identification of Latent Communities on Twitter

User communities in social networks are usually identified by considering explicit structural social connections between users. While such communities can reveal important information about their members such as family or friendship ties and geographical proximity, they do not necessarily succeed at pulling like-minded users that share the same interests together. In this paper, we are interest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015